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Summary—Surface waves guided along a metal rod which is
surrounded by a concentric isotropic plasma sheath are investigated

for both the principal and the higher modes by employing a rigorous
formulation. It is shown that all these modes exhibit a high frequency

cutoff phenomenon; the two first modes propagate down to dc,

whereas all the other modes possess a finite low frequency cut off

and thus exhibit band-pass characteristics. Backward wave propaga-
tion is shown to exist when the plasma sheath is thin; dispersion

curves are calculated and compared with previous data obtained by
means of quasi-static approximations whose limitations and inac-
curacies are also indicated. All the results are derived for the plasma-
clad rod being placed either in free space or in a dielectric medium,

and the dispersion features for both situations are represented in
terms of universal curves.

1. INTRODUCTION

I

iXTEREST JN the modes guided by configurations

containing an isotropic plasma medium of cylindri-

cal shape has recently been stimulated by applica-

tions from a variety of fields. Traveling-wave tube work

and electron-beam interactions with plasma have

motivated the study of a simple structure, that of a

circular homogeneous plasma column in free space, by

Schumannl and Trivelpiece ;2 other, more involved con-

figurations, were also investigated extensively by these
and other \vorkers, 1–11 Of particular interest iS the

structure of a metal cylinder which is clad by a con-

centric plasma sheath8 ‘g since this may represent, under

certain conditions, the idealized geometry of a missile
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surrounded by an ionized layer. The longitLLdinai modes

of propagation in this case are in the form of surface

waves and they are of special importance in problems

concerned with waves that are excited by sources in

the vicinity of the guiding structure.

The present paper examines in detail the surface

waves guided by a plasma-clad metal rod and investi-

gates their properties for both the principal E-type mode

and for the higher hybrid modes. It is observed that the

structure studied here is essentially a Goubau line12’18

in which the dielectric has been replaced by plasma. Due

to the dispersive character of the latter medium, the

behavior of surface waves along the plasma Goubau line

is markedly different from that of waves along the dielec-

tric Goubau line.

One such an aspect is that, in certain ranges, the sur-

face wave along the plasma line has a backward-wave

character, as already shown by Paik;9’10 however, he

only considered the principal, circular-sy rn metric mode

and obtained results by using an apprcmirnate quasi-

static method which is permissible for a certain range of

parameters. Rusch8 used a rigorous analysis and ex-

amined both the principal and the first higher modes

but found no backward-wave behavior; in his case, the

absence of the backward wave is due to the fact that he

did not look for solutions in the entire frequency range

for which propagation is possible, and he employed

values of the geometric and physical pa.rarneters for

which only surface waves of the usual forward type

are possible. On the other hand, it is shown here-

in, by using a rigorous formulation, that backward

waves may exist for all propagating moc[es whenever a

suitable combination of parameters is chcwm. Also, it is

shown that the dispersion curves for the sw+ace waves,

as well as their possible backward character, are strongly

influenced by factors which are disregarded in the quasi-

static anal ysis used by others.29

Due to the dispersive character of the plasma medi-

um, the plasma C,oubau guide is shown to possess a

finite k igh-jreguency cutoff; this feature, a common

one for plasma configurations of this type, z is obviously

absent in the dielectric Goubau line since this latter con-

tains no dispersive media. On the other hand, the two

guides are similar at lower frequencies; in both cases,

the first two modes propagate down to w = O and all the

higher modes possess a finite low-j~eqzLency cutoff.

The special case of a vanishingly small diameter for

the central u]etal rod is also considered and it is shown
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that, when the plasma outer diameter is very large as

compared to the inner one, the modes become similar

(and, in the limit, they become identical) to those along

a plasma column with no metal core. This plasma col-

umn structure was examined in detail by Granatstein,

Schlesinger, and Vigantsll who also used rigorous

methods; the present paper, therefore, extends some of

their results to a more general case.

These results are further generalized by considering

the effect of placing the Goubau line in an ideal dielec-

tric rather than in free space. This is illustrated by com-

paring the dispersion curves for the free space and di-

electric cases and it is shown that the backward-wave

region is more pronounced in the latter situation.

The dispersion relations are derived in Section II and

their general properties are discussed in Section II 1.

The plasma Goubau guide in free space is then treated

in Section IV, and its features are illustrated by disper-

sion curves which were plotted for a variety of param-

eters. These dispersion curves are shown in Section V to

represent universal curves which are applicable for any

dielectric medium surrounding the plasma guide; exam-

ples are given for a specific dielectric and comparisons

are made with the free-space case.

II. DERIVATION OF THE DISPERSION RELATION

The unifor~m cross section of the plasma guide is

shown in Fig. 1 in which a perfectly conducting metal

rod of radius a is concentrically surrounded by a plasma

sheath with an outer radius b. A cylindrical coordinate

system r, ~, z is used, with the z axis taken along the

axis of symmetry of the system. The medium at ~ > b,

i.e., outside the plasma, is taken to be an ideal dielectric

with a relative dielectric constant e, and the perme-

ability is taken to be that of free space: p = PO every-

where.

Fig. l—Geometry of the plasma-clad metal rod.

The plasma medium at a <r <b is assumed to be uni-

form, isotropic and lossless; it may therefore be char-

acterized by the relative dielectric constant

(1)

The configuration described above is therefore that of

a Goubau linelz’13 in which the dielectric at a <r <b has

a permittivity of EOEPand the medium at r > b is assumed,

for generality, to possess a permittivity of eo~,, with Co

denoting the permittivity of free space. Hence, one may

apply the characteristic equation for the Goubau line

(e.g., the equation derived by Kikuchi and Yamashita’3)

directly to the case under consideration, provided

proper modifications are taken care of. We shall there-

fore indicate briefly the procedure for obtaining the

characteristic equation and emphasize only those de-

tails for which the derivation here differs from that for

the conventional Goubau line.

The surface wave modes required are characterized

by a real wavenumber 6 in the z direction. One may

then denote the separation variables in the radial direc-

tion by @ and q for the plasma and dielectric regions,

respectively; the relation between these variables is

given by

~’ = (db)’ – (kob)%p (2)

qz= (/3b)2 – (kob)%., (3)

where ko = u(J,L060) 1/2 is the wavenumber of plane waves

in free space.

As defined here, g is taken as a real number in order to

yield field solutions which decay away from the plasma-

dielectric interface at r = b, as required for a surface

wave. By subtracting (3) fro~m (2), one gets

p’ = q’+ (kob)’(er – c.), (’k)

and since e,> 1> eP, P turns out to be also real. As a con-

sequence, the fields decay away from the plasma-

dielectric interface also in the plasma region. This be-

havior is different from that in the conventional Goubau

line where the surface wave fields decay away only in

the outside (r> b) region but are described within

a < r < b by cylindrical oscillatory functions rather than

the monotonically decreasing functions discussed below.

With the variables defined above, the fields may be

computed by stipulating electric and magnetic longi-

tudinal components in the form

a) in the plasma region (a< r < b),

‘z,=[4@+BK>1(@l’’(”’-”z+n’) “a)

‘zp=[c+’i3+DKn(@le’(”’-’’+”’)’“b)
b) in the outside dielectric region (r> b),

()H,g = FK% q ~ ef@-@z+”+),
b

(6b)

where In and K,, are, respectively, nth order Bessel func-

tions of first and third kind with imaginary arguments.

The parameter n denotes the angular variation and is
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therefore an integer. One notes that, since the functions

In and K,, are monotonic, the modes are designated here

by ~L as a single parameter; this should be contrasted to

the modes of the conventional ~,oubau line which are

denoted by two numbers. The latter situation is due to

the oscillatory nature of the Bessel functions J. and N.

which replace the functions I% and K,, considered here.

The characteristic (secular) equation is obtained by

applying NIaxwell’s equations to yield all the other field

components in terms of E, and If, and stipulating the

boundary conditions

lZzp = J?& = c1 atr=a

E,P = E.,; H,, = H,q\

(
atr=b. (7)

E4P = E@,; H@P = H6,

Eq. (7) yields six homogeneous equations for the coeffi-

cient .4 to F in (5)–(6). The characteristic modes are

then found by requiring the vanishing of the determi-

nant of these six relations, thus obtaining the secular

eqLmtion

[

/3*2 _q22

1-[
Kn’(q) 74(P)

n—. — — —

ko p’q’ – qK.(q) P’Y2(P) 1

where:

-r,(p) =

72(P) =

‘Y3(P) =

T4(p) =

and R=a/b is

[

Kn’(q) _ ~, 73(P)
x 6,— —

qKn (q) 1P71(P) ‘

Knit. – Ink <0,

K,,(P) I.’(RP) – Ilk.’ >0,

K,,’ (p) I,,(Rp) – 1,,’ (p) Kn(Rp) <0,

Kn’(p)I.’(Rp) – In’(p) Kn’(Rp) >0,

(8)

(9)

the ratio between the two radii; In’ and

K.’ are first derivatives of In and K., respectively, with

respect to the entire argument and evaluated at p or Rp

as indicated above.

To find the characteristic modes, one must find values

of p, q, f?, and ko which satisfy (l), (2), (3) and (8), in

terms of given values for u,, b, G and R = a/b. Some simpli-

fication occurs if one solves for ~ and ko from (2) and

(s) and substitutes into (8) to obtain

[

KrJ(q) _ 74(P)

1
K.’(q)

()
nA 2

~P q~,(d I’%2(P) “ fl~n(q) –
797

—.. —

G r~n’(q)
AQ_l.& - (252 ‘ ’10)—. —

where

A% =

As in the case

P%?(P)J P-fI(P) [ pzq)

P’ – q’ = (kob)’(e, – ,,). (11)

of the conventional ~Toubau line, all

the modes are hybrid with the exception of the principal

mode (for n = O) which is an E mode with H,= H, = E+

= O. For the latter case, (10) reduces to

~P ~ Ko(fl)Io(Rp) – ~II(fl)~O(~p) . Kl(q) .
—.— . . (12)
~? q K,(p) ~o(~p) + ~dP)Ko(RP) Ko(q)
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Some general properties of the solutions of the char-

acteristic equations are considered in the next section.

III. C,ENER.IL I’KOI>HRTIES OF T.EL~

SURL7.%C13V7~~13S

Before obtaining actual dispersion curves, it is worth-

while to determine certain general features pertaining to

the surface wave modes.

One notes first that the parameter R = a/b which

enters into (10) by way of the y(p) functions in (9) has

a range of O <R <1. The limit R = 1 corresponds to the

plasma medium being absent; no solutions then exist

since surface waves are not supported 13J: a perfectly

conducting rod. At the other extreme, ,F?= O refers to

an infinitesimally thin metal core. One therefore expects

that, as R-+0, some of the modes studiedl here would

be identified with the modes along a plasma colulmn

(with no metal rod) which are already known.’’”l’ In

fact, if a limiting process is applied to (10), one obtains

~im 73(P) 74(P) In’(p)
—=lim —– _——

R+rl Yl(p) R+o yz(j) – ~&)

Hence,

lim ~
R+o G

[

K.’(q)
—-Z]g_(:’y
qK.(q)

— . (13)
= L’(g)

[

I,,’(p)In’(p) ~LZA z
——

1 ()———
qirn(q) pin(p) pi.(p) – , pzq

However, (13) turns out to be the exact characteristic

equation for the plasma column. Hence, a~l of the modes

along a plasma cylinder (with no metal core) are ac-

counted for by taking the limit case of R== O in a plasma

Goubau line.

It should be observed that the above result is not an

obvious one since the limiting process above should

yield only those modes for which the longi tLldinal electric

field is zero along the axis of a plasma colL[nln. However,

it so happens that the complete set of modes along a

plasma cylinder satisfies this condition, with the excep-

tion of the principal (n= O) mode. On the other hand,

this principal mode cannot be supported by a Goubau

plasma guide with R = O unless the condition for a van-

ishing electric field along the axis is clisregarded, in

which case the guide is indistinguishable from a plasma

column. The complete picture of the modes of the latter

guide as obtainable from those of the plasma GoLlbau

line is thus explained.

When examining the general behavior of the disper-

sion (a vs P) curves that one obtains via (10), it is first

observed that these curves must be restricted to a range

u <wP (i.e., CD<O). This is due to the fact that O <6P< 1

for OJ> OJp, so that the dielectric constant of the sheath
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surrounding the metal core is positive and smaller than

that of the outside medium (assuming, of course, that

ET> 1). However, surface waves are possible along such

a guide only if the reverse is true, as for example, is the

case for the conventional Goubau line, Hence, the dis-

persion curves of the plasma guide are restricted to

values below.

@l = Wp. (Ila)

Another limit feature in terms of frequency is an

asymptotic behavior for large wavenumbers /3. This is

obtained by noting that CP(and hence U) is a continuous

and single-valued function of the parameter q (and

therefore also of /?b). Then one can see by inspection of

(2) and (3) that, as &.~ cc, both P and q become very

large at finite frequencies. One is therefore justified in

applying the large argument approximations for the

Bessel functions in (8) and (9) to get

~im 74(P)— . lim 73(P) _ 1

P+W 72(P) P+* 71(P) ‘

which, when substituted into (10), yields

lim~=–1.
P+- %

Hence, using (1) one obtains an asymptotic behavior for

a frequency given by

~P
(llb)

‘2=#l+e,

which is a result already obtained by othersl’z for a

variety of other cylindrical plasma structures, As

pointed out before, this asymptotic behavior is due to

the dispersive qualities of the plasma medium and is not

a function of geometry.

Due to the upper frequency limit imposed by til = cop

and the asymptotic behavior at w!, a high-frequency cut-

off phenomenon must be associated with a frequency

W. such that wz 5 w. 5 WI for any mode fi. It is also evi-

dent that these curves must exhibit a backward-wave

region if the cutoff frequency w. lies within

1
<%1, (15)

<1+ e, w,

i,e., whenever cw does not coincide with wz (see, for

example, the dispersion curves in the next section). The

possibility of obtaining such a value of w, is clarified

upon viewing a planar plasma layer as another limit

case for the geometry of the plasma Goubau line.
~lhen both radii ~ and ~ become infinite in such a

manner that their difference d = b —a remains finite, the

geometry of the circular plasma guide degenerates into

a plasma slab backed by a perfect conductor, as shown

Ideal Dlelectrtc
/LLo, EoEr

‘L Perfect Conductor

Fig. 2—Geometry of the plasma slab.

in Fig. 2. This particular geometry has already been

studied,l~–lo and it was shown that, for c,= 1, the surface

waves may have a backwarcl-wave character which ap-

pears for small values (less than 0.73 . . .) of the paranl-

eter A defined in (11).

To pursue this analogy further, one notes that if the

plasma guide is to resemble the plasma slab of Fig. 2, it

is necessary for

d=b–a=b(l–if?)

to remain finite as the radius b increases indefinitely;

hence, R should be close to unity. The backward-wave

character is therefore expected to appear if the condi-

tions that A be small and R be close to unity are both

satisfied. This indeed turns out to be the case, as shown

in the succeeding Sections wherein the physical signifi-

cance of A is also discussed. Also, the cutoff frequency

W. lies within OA <w. < UL when the backward-wave be-

havior exists, as expected.

It is clear that w. represents a high-frequency cutoff

value which is due mainly to the dispersive nature of

the plasma and which does not therefore appear in the

dispersion relations for the conventional (dielectric)

Goubau line. One should, therefore, look for an addi-

tional cutoff phenomenon which is associated with the

geometry of the given guide. This occurs at a value of

w = WOsuch that /3= koe,, i.e., when the phase velocity of

the surface wave equals the velocity of light in the outer

medium. It then turns out (see Appendix) that this limit

frequency Q, is finite only for modes with n 22, while

for both n = O and n = 1 no such cutoff occurs and

propagation exists down to w = O. The behavior at the

lower phase velocities is therefore similar to that in the
conventional Goubau line ;13 this is obviously due to the

fact that the geometry, which determines the low phase

velocity behavior, is essentially the same for both the

plasma and the dielectric guides.

The mechanism of energy transport for a surface

wave was already discussed for a plasma slab15 and it

was shown that the power travels in opposite directions

in the plasma and in the outer dielectric. The surface

14 ~, ~, Oliner and T. Talnir, “Backward waves on isotropic
plasma slabs,: J. APP1. Phy~., vol. 33, pp. 231–233; January, 1962.

M T. Tanur and A. A. Ohner, “The spectrum of electromagnetic
waves guided by a plasma layer, ” PROC. IEEE, vol. 51, pp. 31 7–332;
February, 1963.

M cj. pal&z, (fBackIvard Wave Propagation in plasma Structures!”

M. S. Thesis, Dept. of Electrical Engineering, Polytechnic Institute of
Brooklyn, N. Y.; June, 1963.
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wave is then of the backward type if the power contents

of the plasma region is larger than that of the outer

dielectric region and, when the reverse is true, the wave

is of the forward type. This behavior is also due to the

dispersive character of the plasma medium and, in par-

ticular, to the fact that 6P has to be negative if surface

waves are propagated. Although these features were not

specifically examined for the present circular geometry,

it is expected that the surface waves along the plasma

Goubau line possess identical characteristics insofar as

power features are concerned.

IV. DISPERSION CURVES FOR TIIE CASE q = 1

Ivhen the outer dielectric (at r > b) is free space (or

air), a certain simplification occurs for the secular equa-

tion (10) in that the parameter A becomes a constant.

This is due to (11) which, together with (l), yields a

value

wPb b
Ao=—=27rr, (16)

G P

where c is the velocity of light and AP is the plasma

wavelength. Hence, unlike the general case (e, # 1), AO

is independent of frequency and is a constant deter-

mined by geometry (through b) and the physical condi-

tion of the medium (through AP). Small and high values

of An correspond, respectively, to weak and strong con-

centrations of electrons in the plasma region (for a fixed

value of b).

The dispersion curves may then easily be plotted by

regarding q as a running variable in (10) for fixed values

of parameters AO and R; p is simply expressed in terms

of g and AO by means of (11) and values of ED are then

found directly. This procedure lends itself easily to pro-

gramming on a computer. Several curves were thus ob-

tained with an IBNI 650 computer and the results are

shown in Figs. 3–5 for the first three propagating modes.

An inspection of these figures shows that all the fea-

tures discussed in the preceding section are confirmed

numerically. The R = O curves refer to modes along a

plasma cylinder (with no metal core) and they corre-

spond to curves already calculated by C~ranatstein,

Schlesinger and Iigants.11 As already pointed out by

these authors, the principal (n = O) surface wave is never

backward although the higher modes may exhibit this

feature. On the other hand, it is seen in Fig. 3 that the

waves may be backward if R #O, as already shown by

Paikg who used an approximation which is valid in a

restricted range. In addition, it is evident that the back-

ward wave character is retained in the higher modes, as

seen in Figs. A and 5. This feature was overlooked by

RuschR who used an exact formulation to find the dis-

persion curves; but did not investigate solutions in the

range A’uP,IucJZ (i. e., — 1 <eV <O).

It is also noted that the analogy with a plasma slab

(see Section III) is confirmed by the curves. The back-

ward waves, for all the modes, are most prominent when

both A. and 1 –R are small and the range of the back-

ward feature is reduced whenever one cjf these param-

eters increases.

The absence of a low-frequency cutoff for the n = O

and n = 1 modes is observed in Figs. 3 and 4. It may be

noticed in Fig. 4 that the lower-frequency region (ex-

tending at about Ujun < 0.6) yields phase velocities very

close to the speed of light and therefore g is then ex-

tremely small. This corresponds to a wave that is very

loosely bound to the plasma guide anti it is doubtful

whether this region could be reproduced under labora-

tory conditions.

The upper-frequency cutoff UC is clearly apparent in

all the curves. In fact, at the higher modes (n ~ 2), one

notes in Fig. 5 that w, may coincide or be very close to

the limit frequency OJo (for ~ = kO~z). In that case,

practically all of the propagation range has backward-

wave character; also, the entire dispersion curve is then

restricted to a narrow frequency band for small values

of AO.

An interesting aspect of the results shown in the

figures is that the dispersion curves for large values of

AO are very similar for all the modes shown. This is ex-

plained by the fact that, for AO>>l, b is very large when

compared to Av; also, since the frequenc~,r w within the

propagating region is of the order of tip, it follows that

this is a case of a guide operating at relatively high fre-

quencies so that the dispersion curves for successive

modes are indeed expected to be close to each other.

The fact that b>>~P if Ao>>l also explains the prox-

imity of the f-? =0 and R=O.9 curves fcm A. = 10. The

difference between any two curves with c[ifferent values

of R is caused by the presence of the metal core; how-

ever, due to (1 1), the decay of the W21Ve within the

plasm a region is very strong for large values of AO, so

that the presence of the metal is not felt in those cases

unless the plasma sheath is thin (i. e., R is close to

unity). The reverse is evidently true for smaller values

of A.; in those cases, the metal core influences propaga-

tion even for small values of R since then the plasma

sheath is thin in terms of the plasma wavelength AP.

To facilitate certain calculations, the phase velocity

is shown in Figs. 3–5 by means of dashed lines. In par-

ticular, one may estimate the ranges of validity for the

quasi-stat ic approximations that were previously used

in treating similar problems.2, g

It is interesting to observe that the curves shown here

exhibit clearly the role played by the variable A. where-

as the quasi-static analysis does not take this parameter

into account at all. This is due to the fact that the ap-

proximate quasi-static method assumes that the vari-

ables ~ and q are very close to each other. This will hold

for a large frequency range only if Al, is snlall. Hence, the

cluasi-static analysis will alwal-s yield results that are

similar with the curves for AO = 0.1, oIf Figs. 3–5. For

larger values of A,,, this approximation may lead to er-

roneous results; thus, for Ao = 10 and R = O. 1–0.9, the

quasi-static method would show a backward wave region
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which is decidedly inexistent, as indicated by the curves

obtained rigorously and shown here in Figs, 3–5.

V. DISPERSION CtTRVES FOR THE

GENERAL CASE e, # 1

Whereas the outer medium (at r > b) was taken as air

or free space in the previous section, it is also interesting

to obtain dispersion curves for the more general case of

an outer ideal dielectric. Thus, when the plasma sheath

is enclosed by a glass cylinder, the modes of propagation

may be found by considering glass rather than air as

the outer medium. The fact that the surface waves are

decaying away from the plasma-glass interface will

justify the approximation involved in neglecting the air

region surrounding the glass, at least in the case of suffi-

ciently thick glass walls.

To obtain dispersion curves for G #1, one observes

that, by eliminating kOb in (2) and (3) and using the

definition for A in (1 1), one obtains:

Az
(pb)’ = q’+ “

l–~

(17)
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Fig. 4—Universal dispersion curves for the first hybrid mode (H= 1).
R = a/b, v,= phase velocity, c= speed of light in vacuum. When
the outer medium is free space, e,= 1 and A = AO=~Db/c = 2rb/hB.

However, the characteristic equation (10) shows that

the ratio eP/e, is independent of q. for any given combi-

nation of the parameters n, R, q and A; hence ~b itself

is not dependent on any particular c. under the same

conditions.

The parameter A does not have a simple physical

meaning except in the particular case of free space, as

described in the previous section. On the other hand,

(11) may be written as

which, by using expression (1) for CP, yields

(-)A2

()2
=1+(%-1): .

A o UP

(18)

Consider now the ordinate y used in Figs. 3–5. By

substituting (18), one gets

A. a

()

—.i

y=dx ——= l–:? , (19)
A W, 6’

which, by virtue of the argument employed above, is

not a function of 6..

one therefore observes that, for any point on the dis-



1964 Tamir and Pa16cz: Surface Waves on Pfasma-Clad Rods

-1

.6 L [—; _(— ,_l’\
1 10 20 50 - A.l. =loo

-flrvp=cy 2 & VP

.4 /
/

/
.2

/

.6 I

‘ [’L’-”%
#qlp=c/ 2

L--4’ /“
.2

/ I I

t-k fllllll lllllllllllll
/“

./=
r
/

I

“8-El 1,/(
/

/’.9

.6 I o

#4

.2
/

,/

.=”
0. I I I I +-r 1 I 1 I I I I I I I

.01 .1 235710 I00

NORMALIZED WAVENUM8ER: @b —

Fig. 5—~Tniversal dispersion curves for the second h~brid mode
(n =2). R=a/b, v,=phase velocity, c=speed of light III vacuum.
\\-hen the outer medium is free space: e,= 1 and A =A,, = cu=b/c
=2rrb/&.

persion curves, both the abscissa ~b and the ordinate y

are entirely independent of the value of e,. Hence, Figs.

3–5 represent universal curves for any e,; the dielectric

constant in the outer medium is, for any fib, reflected

only in the values of co/wP as obtained by means of the

curves and the use of (18) and (19).

Although the universal curves in Figs. 3–5 are useful

in finding the appropriate wavenumber @ for any given

geometry and operating frequency, the graphs do not

show dispersion curves in the usual sense since, if

e, # 1, the parameter A itself is not constant with fre-

quency. It is, however, easy to plot any dispersion curve

(with AO = constant rather than A = constant) by using

the given universal curves in conjunction with (18) and

(19). This is illustrated in Fig. 6 which was constructed

with the aid of universal curves shown in Fig. 3 and

with the pertinent relations (18) and (19).

A significant feature of the dispersion curves for

e, # 1 is that the backward-wave region may be appreci-

ably wider when compared to the free-space case c, = 1.

This is due to the fact that the dispersion relations are

dominated by the geometry at lower values of @b and by

the dielectric region at higher values of ~b. In the latter

case, the curves approach the asymptote at

Fig. 6-

NORMALIZED WAVENUMSER: Bb —*

-Dispersion curtes for the principal mode
(w= O), with: R=O.9 and ,,=4.

CJ 1
—

LJn=dl +%’

already derived in Section I I 1. At the lower values of

~b, the curves reach frequencies close to CU/C.Jfl= 1, espe-

cially for the smaller values of AO; also, varying e, has

little effect on the maximum attainable value of u/wP.

The resulting increase of the bandwidth for the back-

ward-wave region may be seen by comparing Figs. 3

and 6; in particular, for A,= 0.1, the bandwidth for

e,= 4 is nearly twice that for ~,= 1. It is evident that a

more pronounced increase in the backwzLrd-wave band-

width may be achieved by increasing R or e,, or both.

At the end of Section IV, a comparison was made

between the quasi-static approximation and the present

rigorous method for obtaining dispersion curves and the

significance of the parameter AO was demonstrated. It is

clear that all these comments also apply for the case

c, # 1 since the curves discussed here are derived directly

from the ones in the previous section.

1~1. CONCLUSION

The modes supported by a plasma Ckubau line were

examined in detail and it was shown that backward-

wave propagation regions may exist for both the prin-

cipal E-type mode and the higher hybrid modes. The

condition for the existence of these regions was found to

be that the diameter of the metal core must be large

when compared to the thickness of the plasma sheath,

but small when compared to the plasma, wavelength k,.

The backward-wave range may be considerably en-

hanced by surrounding the plasma sheath with a di-

electric medium rather than free space.

The behavior at small phase velocities is determined

mainly by the geometry of the guide. Due to this reason,

both the plasma and the dielectric Goubau lines are

similar in that the first two modes propagate down to

~ = (), ~~hereas all the higher modes possess a finite limit-

ing frequency. On the other hand, the clispersive nature

of the plasma manifests itself at the higher phase veloci-

ties and introduces a high-frequency cultclff phenomenon

which is absent in the conventional C,oubau line. The

propagation range for the higher modes is therefore re-

stricted to a frequency band which may become very

narrow for a suitable choice of the parameters involved,



196 IEEE TRANSACTIONS ON IMICRO WAVE THEORY AND TECHNIQUES

In view of the above characteristics, the plasma

Goubau line offers possibilities as a band filter applica-

tion or as a means for developing a simple slow back-

ward-wave structure. In addition, the various surface

wave modes analyzed herein are of importance in prob-

lems involving radiation from missiles which are sur-

rounded by an ionized layer when they reenter the

atmosphere.

Although the analysis here is rigorous, it is also recog-

nized that the plasma is taken as a highly idealized

medium which may not be appropriate for the applica-

tions cited above. Thus, losses due to collisions or other

causes were disregarded and the plasma was taken as a

completely uniform medium which is sharply defined in

space. It is nevertheless expected that the main features

described here (such as the existence itself of surface

waves and their backward-wave character) will be re-

tained even in actual, less perfect, plasma configura-

tions.

VII. APPENDIX—C.iLCCTL.ITION OF THE

LIMIT FREQUENCY CJO

The values for the limit frequency COOare obtained by

letting q approach zero in (10) or (12). One then dis-

tinguishes between the following situations.

a) 72=0

In this case, (12) is used and, since p~A as g~O, it

is seen by inspection that eP~ — ~. This means that

w/wP~O so that propagation extends to dc in the prin-

cipal mode.

b) n=l

For the first hybrid mode, (10) is employed together

with the following approximation for the Bessel func-

tions of small arguments.

K,’(q)

( )
—-–s-: l–qzlog’: ,
q~l(q) q’

where C=log7=0.5772 . . - is Euler’s constant. Multi-

plying the numerator and denominator of (10) with q’,

introducing the above approximation and retaining first

terms only, one obtains for very small values of q

2A log ~ –
[

‘Y4(A)
++—

% y2(Aj 1
=-+ —.
G 73(A)

++—

71(M

Due to the term containing the logarithm, Cp+ – oc

as q-+0. Hence, the first hydrid mode also extends down

tow=o.

c) ?’2>2

In the case of all higher modes, the pertinent approxi-

mation is

K.’(q) 1

[

(r=.— 91 + 1 (?2> 2),
@n(q) — g’ 2(?2 – 1)
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Fig. 7—P1ot of the limit frequency WOfor the second hybrid mucle
(,L = 2) in terms of the plasma guide parameters.
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uhich, when introduced into (10), yields

74(A)

&+;+—

% Y2(A)
—+—— —— .

c, 73(A)
:+—

‘YI(.i)

Hence, propagation extends down to a ji~zite limit fre-

quency, as determined from the last equation. Since the

Y(A) functions vary slowly with R, except near R = 1,

these limit frequencies are very close to those obtained

for the plasma column (with no metal rod). This effect

is illustrated in Figs. 7 and 8 for n = 2 and n =3, respec-

tively.

These curves also give a measure of the propagation

bandwidth obtainable in the higher modes since for

A <5, this band lies very closely between the values of UO

obtained here and W1= til(l + t,)–1/2.
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