Surface Waves on Plasma-Clad Metal Rods
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Summary—Surface waves guided along a metal rod which is
surrounded by a concentric isotropic plasma sheath are investigated
for both the principal and the higher modes by employing a rigorous
formulation. Itis shown that all these modes exhibit a high frequency
cutoff phenomenon; the two first modes propagate down to dc,
whereas all the other modes possess a finite low frequency cut off
and thus exhibit band-pass characteristics. Backward wave propaga-
tion is shown to exist when the plasma sheath is thin; dispersion
curves are calculated and compared with previous data obtained by
means of quasi-static approximations whose limitations and inac-
curacies are also indicated. All the results are derived for the plasma-~
clad rod being placed either in free space or in a dielectric medium,
and the dispersion features for both situations are represented in
terms of universal curves.

I. INTRODUCTION

NTEREST IN the modes guided by configurations
J:[ containing an isotropic plasma medium of cylindri-

cal shape has recently been stimulated by applica-
tions from a variety of fields. Traveling-wave tube work
and electron-beam interactions with plasma have
motivated the study of a simple structure, that of a
circular homogeneous plasma column in free space, by
Schumann!® and Trivelpiece;? other, more involved con-
figurations, were also investigated extensively by these
and other workers.!'' Of particular interest is the
structure of a metal cylinder which is clad by a con-
centric plasma sheath®? since this may represent, under
certain conditions, the idealized geometry of a missile

Manuscript received October 21, 1963. This work was sponsored
by the Office of Aerospace Research (USAF), Electronics Research
Directorate of the Air Force Cambridge Research Laboratories, Bed-
ford, Mass., under contract no. AF-19(628)-2357.

Dr. Tamir is with the Electrophysics Department, Polytechnic
Institute of Brooklyn, N. Y.

Mrs. Palécz is located at Pleasantville, N. Y.

' W. O. Schumann, “Uber elektrische Wellen lings eines dielek-
trische Zylinders in einer dielektrische Umgebung, wobei eines oder
beide der beiden Medien Plasma sind,” Z. Naturforsch., vol. 5a, pp.
181-191; April, 1950.

2 A. \W. Trivelpiece, “Slow Wave Propagation in Plasma Wave-
guides,” Calif. Inst. of Tech., Pasadena, Tech. Rept. No.7; May, 1958.

3 W. O. Schumann, “Uber langsame elektrische Wellen in gasge-
fiillten Metallrohren,” Z. Phys., vol. 128, pp. 629-634; December,
1950.

+¢L. D. Smullin and P. Chorney, “Propagation in Ton-Loaded
Waveguides,” Procs Symp. on Electronic Waveguides, Polytechnic
Institute of Brooklyn, N. Y., pp. 229-248; April, 1958.

5 A. W. Trivelpiece and R. W. Gould, “Space charge waves in
cylindrical plasma columns,” J. 4 ppl. Phys., vol. 30, pp. 1784-1793;
November, 1959, B

6 W. O. Schumann, “Uber die Entstehung einer ‘Backward Wave’
in einem nichtmagnetisierten, von Luft begrenzten Plasmazylinder,”
Z.angew Phys., vol. 12, pp. 145-148; April, 1960.

7W. O. Schumann, “Uber der Einfluss der Langmuir-Schicht
Zwischen Plasma und Gefasswand auf die Wellenausbreitung in
einem Plasmakabel,” Z. angew Phys., vol. 12, pp. 298-300; July, 1960.

8 W. V. T. Rusch, “Propagation constants of surface waves on a
plasma-clad cylinder,” IRE TRANS. ON ANTENNAS AND PROPAGATION
(Correspondence), vol. AP-10, pp. 213-214; March, 1962.

9 S, F. Paik, “A backward wave in plasma waveguide.” Proc.
IRE {Correspondence), vol. 50, pp. 462-463; April, 1962.

te S F. Paik, “Backward waves in annular plasma columns,” J.
Electronics and Controls, vol. XI11, pp. 515-524; December, 1962.

1V, L. Granatstein, S. P. Schlesinger and A. Vigants, “The open
plasma guide in extremes of magnetic field,” IEEE Trans. ON AN-
TENNAS AND PROPAGATION, vol. AP-11, pp. 489-496; July, 1963.

surrounded by an ionized layer. The longitudinal modes
of propagation in this case are in the form of surface
waves and they are of special importance in problems
concerned with waves that are excited by sources in
the vicinity of the guiding structure.

The present paper examines in detail the surface
waves guided by a plasma-clad metal rod and investi-
gates their properties for both the principal E-type mode
and for the higher hybrid modes. It is observed that the
structure studied here is essentially a Goubau line!?13
in which the dielectric has been replaced by plasma. Due
to the dispersive character of the latter medium, the
behavior of surface waves along the plasma Goubau line
is markedly different from that of waves along the dielec-
tric Goubau line.

One such an aspect is that, in certain ranges, the sur-
face wave along the plasma line has a backward-wave
character, as already shown by Paik;%!" however, he
only considered the principal, circular-symmetric mode
and obtained results by using an approximate quasi-
static method which is permissible for a certain range of
parameters. Rusch® used a rigorous analysis and ex-
amined both the principal and the first higher modes
but found no backward-wave behavior; in his case, the
absence of the backward wave is due to the fact that he
did not look for solutions in the entire frequency range
for which propagation is possible, and he employed
values of the geometric and physical parameters for
which only surface waves of the usual forward type
are possible. On the other hand, it is shown here-
in, by using a rigorous formulation, that backward
waves may exist for all propagating modes whenever a
suitable combination of parameters is chosen. Also, it is
shown that the dispersion curves for the surface waves,
as well as their possible backward character, are strongly
influenced by factors which are disregarded in the quasi-
static analysis used by others.>?*

Due to the dispersive character of the plasma medi-
um, the plasma Goubau guide is shown to possess a
finite high-frequency cutoff; this feature, a common
one for plasma configurations of this type,? is obviously
absent in the dielectric Goubau line since this latter con-
tains no dispersive media. On the other hand, the two
guides are similar at lower {requencies; in both cases,
the first two modes propagate down to w=0 and all the
higher modes possess a finite low-frequency cutoff.

The special case of a vanishingly small diameter for
the central metal rod is also considered and it is shown
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that, when the plasma outer diameter is very large as
compared to the inner one, the modes become similar
(and, in the limit, they become identical) to those along
a plasma column with no metal core. This plasma col-
umn structure was examined in detail by Granatstein,
Schlesinger, and Vigants!! who also used rigorous
methods; the present paper, therefore, extends some of
their results to a more general case.

These results are further generalized by considering
the effect of placing the Goubau line in an ideal dielec-
tric rather than in free space. This is illustrated by com-
paring the dispersion curves for the free space and di-
electric cases and it is shown that the backward-wave
region is more pronounced in the latter situation.

The dispersion relations are derived in Section Il and
their general properties are discussed in Section III.
The plasma Goubau guide in free space is then treated
in Section 1V, and its features are illustrated by disper-
sion curves which were plotted for a variety of param-
eters. These dispersion curves are shown in Section V to
represent universal curves which are applicable for any
dielectric medium surrounding the plasma guide; exam-
ples are given for a specific dielectric and comparisons
are made with the free-space case.

I11. DERIVATION OF THE DISPERSION RELATION

The uniform cross section of the plasma guide is
shown in Fig. 1 in which a perfectly conducting metal
rod of radius a is concentrically surrounded by a plasma
sheath with an outer radius b. A cylindrical coordinate
system 7, ¢, z is used, with the z axis taken along the
axis of symmetry of the system. The medium at »>b,
i.¢., outside the plasma, is taken to be an ideal dielectric
with a relative dielectric constant e and the perme-
ability is taken to be that of free space: u=pu, every-
where.

Ides! Dielectric
Fo,&0¢;

Perfect
Conductor

Fig. 1—Geometry of the plasma-clad metal rod.

The plasma medium at a <r» <b is assumed to be uni-
form, isotropic and lossless; it may therefore be char-
acterized by the relative dielectric constant

e =1- (%1) (1)

The configuration described above is therefore that of
a Goubau line'**? in which the dielectric at ¢ <7 <b has
a permittivity of €€, and the medium at»> b is assumed,
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for generality, to possess a permittivity of €€, with ¢
denoting the permittivity of free space. Hence, one may
apply the characteristic equation for the Goubau line
(e.g., the equation derived by Kikuchi and Yamashita!s)
directly to the case under consideration, provided
proper modifications are taken care of. We shall there-
fore indicate briefly the procedure for obtaining the
characteristic equation and emphasize only those de-
tails for which the derivation here differs from that for
the conventional Goubau line.

The surface wave modes required are characterized
by a real wavenumber § in the z direction. One may
then denote the separation variables in the radial direc-
tion by p and ¢ for the plasma and dielectric regions,
respectively; the relation between these variables is
given by

p* = (80)* — (kob)%e, 2)
¢* = (80)* — (kod)?%er, 3

where ko =w(uoeo)!/? is the wavenumber of plane waves
in free space.

As defined here, ¢ is taken as a real number in order to
vield field solutions which decay away from the plasma-
dielectric interface at r=»5, as required for a surface
wave. By subtracting (3) from (2), one gets

p* = ¢+ (keb)*(er — €), (4)

and since ¢,>1>¢,, p turns out to be also real. As a con-
sequence, the fields decay away from the plasma-
dielectric interface also in the plasma region. This be-
havior is different from that in the conventional Goubau
line where the surface wave fields decay away only in
the outside (»>b) region but are described within
a <r<b by cylindrical oscillatory functions rather than
the monotonically decreasing functions discussed below.

With the variables defined above, the fields may be
computed by stipulating electric and magnetic longi-
tudinal components in the form

a) in the plasma region (¢ <r<b),

E., = [Azn (p %) + BK, (p %)] gr@i=b®)  (5a)
4 e
s [o1(p ) 91 ) 0

b) in the outside dielectric region (r>b),

4

L., = EK, (q —b~—> el wt—Betnd) (6a)
4

H., = FK, g_b_ gt (wi—fatnd) (6b)

where I, and K, are, respectively, #th order Bessel func-
tions of first and third kind with imaginary arguments.
The parameter # denotes the angular variation and is
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therefore an integer. One notes that, since the functions
I, and K, are monotonic, the modes are designated here
by # as a single parameter; this should be contrasted to
the modes of the conventional Goubau line which are
denoted by two numbers. The latter situation is due to
the oscillatory nature of the Bessel functions J, and N,
which replace the functions I, and K, considered here.

The characteristic (secular) equation is obtained by
applying Maxwell's equations to yield all the other field
components in terms of E, and H, and stipulating the
boundary conditions

E,=FE;» =0 atr =a
E,=E,; H.,,=H,
? ! ? q} at r = b. (7N
Egp = Egq; Hyp = Hyq

Eq. (7) yields six homogeneous equations for the coeffi-
cient 4 to F in (5)—(6). The characteristic modes are
then found by requiring the vanishing of the determi-
nant of these six relations, thus obtaining the secular

equation
[ B Pz*Q} [ ' (9) 74(P)]
ke p'¢* gKn(g)  pve(p)
K.'(q) v3(p)
X | & — €p s 8
[ K. mm] ®
where:

v1(p) = Ku(p)In(Rp) — I(p) Kn(Rp) <0,
ve(p) = Ku(p)1 (Rp) — L.(p) K. (Rp) > 0,

’Y'a’(P) = Kn’(p)]n<RP) - IILI(P)KH(RP) <0,
vi(p) = K (P (Rp) — I/ () K (Rp) > 0, (9)
and R=a/b is the ratio between the two radii; 7,’ and

K, are first derivatives of I, and K,, respectively, with
respect to the entire argument and evaluated at p or Rp
as indicated above.

To find the characteristic modes, one must find values
of p, q, B, and k, which satisfy (1), (2), (3) and (8), in
terms of given valuesfor w,,b,¢, and R =a/b. Some simpli-
fication occurs if one solves for 8 and k¢ from (2) and
(3) and substitutes into (8) to obtain

[Kn’(q) B w(?)} () (11})2
& _LgKu@  pra(p)d gKu(g) pq° } (10)
& [Kn’(q) () } vi(p) (_@)2
9K.(@)  prva(p)) pvi(p) p%q
where
A = p* — ¢ = (kob)*(& — €p). (1)

As in the case of the conventional Goubau line, all
the modes are hybrid with the exception of the principal
mode (for n=0) which is an E mode with H,=H,=E,
=0. For the latter case, (10) reduces to

& _ p Kop)Io(Rp) — Ln(p)Ko(Rp) Ki(g)

—_ 12
o L B T+ Lo KRy Kol
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Some general properties of the solutions of the char-
acteristic equations are considered in the next section.

IIl. GENERAL PROPERTIES OF THE
SURFACE WAVES

Before obtaining actual dispersion curves, it is worth-
while to determine certain general features pertaining to
the surface wave modes.

One notes first that the parameter R=a/b which
enters into (10) by way of the y(p) functions in (9) has
a range of 0 <R <1, The limit R=1 corresponds to the
plasma medium being absent; no solutions then exist
since surface waves are not supported by a perfectly
conducting rod. At the other extreme, R=0 refers to
an infinitesimally thin metal core. One therefore expects
that, as R—0, some of the modes studied here would
be identified with the modes along a plasma column
(with no metal rod) which are already known."*!! In
fact, if a limiting process is applied to (10), one obtains

I vi(p) - vi(p) _ L(p)
R0 v1(p) koo v2(p)  I.(p)
Hence,
lim 2
R—0 €
[Kn’(q) B M(P)] K9 (_@)
_LeKg)  pL(p)1 Kl \pg*/ (13)
[Kn’(q) _ Ly } L) (’_@)2
gK.(q)  pla(p)d pL.(p) &

However, (13) turns out to be the exact characteristic
equation for the plasma column. Hence, @/l of the modes
along a plasma cylinder (with no metal core) are ac-
counted for by taking the limit case of R=0 in a plasma
Goubau line.

It should be observed that the above result is not an
obvious one since the limiting process above should
yield only those modes for which the longitudinal electric
field is zero along the axis of a plasma column. However,
it so happens that the complete set of modes along a
plasma cylinder satisfies this condition, with the excep-
tion of the principal (#=0) mode. On the other hand,
this principal mode cannot be supported by a Goubau
plasma guide with R=0 unless the condition for a van-
ishing electric field along the axis is disregarded, in
which case the guide is indistinguishable from a plasma
column. The complete picture of the modes of the latter
guide as obtainable from those of the plasma Goubau
line is thus explained.

When examining the general behavior of the disper-
sion (w vs B) curves that one obtains via (10), it is first
observed that these curves must be restricted to a range
w<wy (i.e., €,<0). This is due to the fact that 0 <e, <1
for w>w,, so that the dielectric constant of the sheath
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surrounding the metal core is positive and smaller than
that of the outside medium (assuming, of course, that
&,>1). However, surface waves are possible along such
a guide only if the reverse is true, as for example, is the
case for the conventional Goubau line. Hence, the dis-
persion curves of the plasma guide are restricted to
values below.

w1 = Wp.

(14a)

Another limit feature in terms of frequency is an
asymptotic behavior for large wavenumbers 8. This 1s
obtained by noting that €, (and hence w) is a continuous
and single-valued function of the parameter g (and
therefore also of 8b). Then one can see by inspection of
(2) and (3) that, as Bb— c, both p and ¢ become very
large at finite frequencies. One is therefore justified in
applying the large argument approximations for the
Bessel functions in (8) and (9) to get

vs(p)
im ——— =
= Y1(p)

. v4(p)
lim =
v Ya(p)

which, when substituted into (10), yields

€
lim —= —1.
pow €

Hence, using (1) one obtains an asymptotic behavior for
a frequency given by
@p

g = 14
“ \/1 + €r ( b)

which is a result already obtained by others!* for a
variety of other cylindrical plasma structures. As
pointed out before, this asymptotic behavior is due to
the dispersive qualities of the plasma medium and is not
a function of geometry.

Due to the upper frequency limit imposed by wi=w,
and the asymptotic behavior at ws, a high-frequency cut-
off phenomenon must be assoc1ated with a frequency
w. such that w: <w,<w, for any mode 7. It is also evi-
dent that these curves must exhibit a backward-wave
region if the cutoff frequency w, lies within

1 We
< — <1,

———— 15
Vitea wp (15)

i.e., whenever w, does not coincide with ws (see, for
example, the dispersion curves in the next section). The
possibility of obtaining such a value of w. is clarified
upon viewing a planar plasma layer as another limit
case for the geometry of the plasma Goubau line.
When both radii ¢ and b become infinite in such a
manner that their difference d =b—a remains finite, the
geometry of the circular plasma guide degenerates into
a plasma slab backed by a perfect conductor, as shown
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Fig. 2—Geometry of the plasma slab.

in Fig. 2. This particular geometry has already been
studied, % and it was shown that, for ¢,=1, the surface
waves may have a backward-wave character which ap-
pears for small values (less than 0.73 - - -) of the param-
eter A defined in (11).

To pursue this analogy further, one notes that if the
plasma guide is to resemble the plasma slab of Fig. 2, it
is necessary for

d=0b—a=0b1-R)

to remain finite as the radius & increases indefinitely;
hence, R should be close to unity. The backward-wave
character is therefore expected to appear if the condi-
tions that A be small and R be close to unity are both
satisfied. This indeed turns out to be the case, as shown
in the succeeding Sections wherein the physical signifi-
cance of A is also discussed. Also, the cutoff frequency
w, lies within ws;<w.<w; when the backward-wave be-
havior exists, as expected.

It is clear that w, represents a high-frequency cutoff
value which is due mainly to the dispersive nature of
the plasma and which does not therefore appear in the
dispersion relations for the conventional (dielectric)
Goubau line. One should, therefore, look for an addi-
tional cutoff phenomemon which is associated with the
geometry of the given guide. This occurs at a value of
w=wy such that 8= kpe,, i.e., when the phase velocity of
the surface wave equals the velocity of light in the outer
medium. It then turns out (see Appendix) that this limit
frequency w, is finite only for modes with #>2, while
for both #=0 and #=1 no such cutofl occurs and
propagation exists down to w=0. The behavior at the
lower phase velocities is therefore similar to that in the
conventional Goubau line;'? this is obviously due to the
fact that the geometry, which determines the low phase
velocity behavior, is essentially the same for both the
plasma and the dielectric guides.

The mechanism of energy transport for a surface
wave was already discussed for a plasma slab® and it
was shown that the power travels in opposite directions
in the plasma and in the outer dielectric. The surface

LA, A, Olmer and T. Tamir, “Backward waves on isotropic
plasma slabs,” J. Appl. Phys., vol, 33, pp. 231-233; January, 1962,

1T, Tamir and A. A. Ohner “The spectrum of electromagnetlc
waves guided by a plasma Iayer,” Proc. IEEE, vol. 51, pp. 317-332;
February, 1963.

16 S Palécz, “Backward Wave Propagation in Plasma Structures,”
M.S. Thesis, Dept. of Electrical Engineering, Polytechnic Institute of
Brooklyn, N.Y; ; June, 1963.
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wave is then of the backward type if the power contents
of the plasma region is larger than that of the outer
dielectric region and, when the reverse is true, the wave
1s of the forward type. This behavior is also due to the
dispersive character of the plasma medium and, in par-
ticular, to the fact that €, has to be negative if surface
waves are propagated. Although these features were not
specifically examined for the present circular geometry,
it is expected that the surface waves along the plasma
Goubau line possess identical characteristics insofar as
power features are concerned.

IV. DispERSION CURVES FOR THE CASE ¢, =1

When the outer dielectric (at »>b) is free space (or
air), a certain simplification occurs for the secular equa-
tion (10) in that the parameter A becomes a constant.
This is due to (11) which, together with (1), yields a
value

(16)

where ¢ is the velocity of light and N, is the plasma
wavelength. Hence, unlike the general case (e,%1), A
is independent of frequency and is a constant deter-
mined by geometry (through b) and the physical condi-
tion of the medium (through A,). Small and high values
of Ay correspond, respectively, to weak and strong con-
centrations of electrons in the plasma region (for a fixed
value of b).

The dispersion curves may then easily be plotted by
regarding ¢ as a running variable in (10) for fixed values
of parameters A, and R; p is simply expressed in terms
of ¢ and Ay by means of (11) and values of ¢, are then
found directly. This procedure lends itself easily to pro-
gramming on a computer. Several curves were thus ob-
tained with an IBM 650 computer and the results are
shown in IFigs. 3--5 for the first three propagating modes.

An inspection of these figures shows that all the fea-
tures discussed in the preceding section are confirmed
numerically. The R=0 curves refer to modes along a
plasma cylinder (with no metal core) and they corre-
spond to curves already calculated by Granatstein,
Schlesinger and Vigants.'' As already pointed out by
these authors, the principal (# =0) surface wave is never
backward although the higher modes may exhibit this
feature. On the other hand, it is seen in Fig. 3 that the
waves may be backward if R0, as already shown by
Paik® who used an approximation which is valid in a
restricted range. In addition, it is evident that the back-
ward wave character is retained in the higher modes, as
seen in Figs. 4 and 5. This feature was overlooked by
Rusch® who used an exact formulation to find the dis-
persion curves; but did not investigate solutions in the
range Kw,/wc]; (i.e., —1 <€, <0).

It is also noted that the analogy with a plasma slab
(see Section I11) is confirmed by the curves. The back-
ward waves, for all the modes, are most prominent when
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both Ay and 1~R are small and the range of the back-
ward feature is reduced whenever one of these param-
eters increases.

The absence of a low-frequency cutoff for the #=0
and # =1 modes is observed in Figs. 3 and 4. [t may be
noticed in Fig. 4 that the lower-frequency region (ex-
tending at about w/w, <0.6) yields phase velocities very
close to the speed of light and therefore ¢ is then ex-
tremely small. This corresponds to a wave that is very
loosely bound to the plasma guide and it is doubtful
whether this region could be reproduced under labora-
tory conditions,

The upper-frequency cutoff w, is clearly apparent in
all the curves. In fact, at the higher modes (»>2), one
notes in Fig. 5 that w, may coincide or be very close to
the limit frequency w, (for B=k¢v'e). In that case,
practically all of the propagation range has backward-
wave character; also, the entire dispersion curve is then
restricted to a narrow frequency band for small values
of A().

An interesting aspect of the results shown in the
figures is that the dispersion curves for large values of
Ay are very similar for all the modes shown. This is ex-
plained by the fact that, for A;>>1, b is very large when
compared to \,; also, since the frequency w within the
propagating region is of the order of w,, it follows that
this is a case of a guide operating at relatively high fre-
quencies so that the dispersion curves for successive
modes are indeed expected to be close to each other.

The fact that b>>\, if A>>1 also explains the prox-
imity of the R=0 and R=0.9 curves for A;=10. The
difference between any two curves with different values
of R is caused by the presence of the metal core; how-
ever, due to (11), the decay of the wave within the
plasma region is very strong for large values of Ay, so
that the presence of the metal is not felt in those cases
unless the plasma sheath is thin (i.e., R is close to
unity). The reverse is evidently true for smaller values
of Ay; in those cases, the metal core influences propaga-
tion even for small values of R since then the plasma
sheath is thin in terms of the plasma wavelength \,.

To {acilitate certain calculations, the phase velocity
is shown in Figs. 3-5 by means of dashed lines. In par-
ticular, one may estimate the ranges of validity for the
quasi-static approximations that were previously used
in treating similar problems.2*?

It is interesting to observe that the curves shown here
exhibit clearly the role plaved by the variable Ay where-
as the quasi-static analysis does not take this parameter
into account at all. This is due to the Tact that the ap-
proximate quasi-static method assumes that the vari-
ables p and ¢ are very close to each other. This will hold
for a large frequency range only if Ay is small. Hence, the
quasi-static analysis will always yield results that are
similar with the curves for Ay=0.1, of Figs. 3-5. For
larger values of A,, this approximation may lead to er-
roneous results; thus, for A¢=10 and R=0.1-0.9, the
quasi-static method would show a backward wave region
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Fig. 3—Universal dispersion curves for the principal (circularly sym-
metric) mode (#=0). R=a/b, V,=phase velocity, P,=speed of
light in vacuum. When the outer medium is free space, & =1 and
A=Aog=wyb/c=27b/\p.

which is decidedly inexistent, as indicated by the curves
obtained rigorously and shown here in Figs. 3-3.

V. DisrERrRsioN CURVES FOR THE
GENERAL CASE €71

Whereas the outer medium (at #>b) was taken as air
or free space in the previous section, it is also interesting
to obtain dispersion curves for the more general case of
an outer ideal dielectric, Thus, when the plasma sheath
is enclosed by a glass cylinder, the modes of propagation
may be found by considering glass rather than air as
the outer medium. The fact that the surface waves are
decaying away from the plasma-glass interface will
justify the approximation involved in neglecting the air
region surrounding the glass, at least in the case of suffi-
ciently thick glass walls.

To obtain dispersion curves for ¢.#1, one observes
that, by eliminating k¢ in (2) and (3) and using the
definition for A in (11), one obtains:

2

A
(88) = g* + ——— -
)

€

(17

NORMALIZED WAVENUMBER: gb ——*

Fig. 4—Universal dispersion curves for the first hybrid mode (#=1).
R=a/b, v,=phase velocity, c=speed of light in vacuum. When
the outer medium is free space, =1 and A=A¢=wpb/c=270/A,.

However, the characteristic equation (10) shows that
the ratio €,/€, is independent of ¢, for any given combi-
nation of the parameters #, R, ¢ and A; hence b itself
is not dependent on any particular € under the same
conditions.

The parameter A does not have a simple physical
meaning except in the particular case of free space, as
described in the previous section. On the other hand,
(11) may be written as

wb\?/ w\? w\?
A% = < ) <#> (e — €p) = <Ao—‘> (& — &),
¢ wp Wy

which, by using expression (1) for e,, yields

() vy

Consider now the ordinate y used in Figs. 3-5. By
substituting (18), one gets

— Ay w e, \ 7t
:Vz\/fr__=<1_"1i> ,
A wp €

which, by virtue of the argument employed above, is
not a function of e,.
One therefore observes that, for any point on the dis-

(18)

(19)
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Fig. S—Universal dispersion curves for the second hybrid mode
(n=2). R=a/b, v,=phase velocity, c=speed of light in vacuum.
When the outer medium is free space: =1 and A=Ao=wub/c
=27b/\p.

persion curves, both the abscissa 8b and the ordinate y
are entirely independent of the value of €. Hence, Figs.
3-5 represent universal curves for any e,; the dielectric
constant in the outer medium is, for anv 8, reflected
only in the values of w/w, as obtained by means of the
curves and the use of (18) and (19).

Although the universal curves in Figs. 3-5 are useful
in finding the appropriate wavenumber § for any given
geometry and operating frequency, the graphs do not
show dispersion curves in the usual sense since, if
&1, the parameter A itself is not constant with fre-
quency. It is, however, easy to plot any dispersion curve
(with Ay=constant rather than A =constant) by using
the given universal curves in conjunction with (18) and
(19). This is illustrated in Fig. 6 which was constructed
with the aid of universal curves shown in Fig. 3 and
with the pertinent relations (18) and (19).

A significant feature of the dispersion curves for
€.~ 1 is that the backward-wave region may be appreci-
ably wider when compared to the free-space case ¢,=1.
This is due to the fact that the dispersion relations are
dominated by the geometry at lower values of 8b and by
the dielectric region at higher values of 8b. In the latter
case, the curves approach the asymptote at
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Fig. 6—Dispersion curves for the principal mode
(n=0), with: R=0.9 and ¢ =4.

w 1

w Vite
already derived in Section I11. At the lower values of
Bb, the curves reach frequencies close to w/w,=1, espe-
cially for the smaller values of Ag; also, varying €, has
little effect on the maximum attainable value of w/w,.
The resulting increase of the bandwidth for the back-
ward-wave region may be seen by comparing Figs. 3
and 6; in particular, for A¢=0.1, the bandwidth for
e, =4 is nearly twice that for ¢,=1. It is evident that a
more pronounced increase in the backward-wave band-
width may be achieved by increasing R or €, or both.
At the end of Section 1V, a comparison was made
between the quasi-static approximation and the present
rigorous method for obtaining dispersion curves and the
significance of the parameter A, was demonstrated. It is
clear that all these comments also apply for the case
e.7#1 since the curves discussed here are derived directly
from the ones in the previous section.

VI. CoNcLUSION

The modes supported by a plasma Goubau line were
examined in detail and it was shown that backward-
wave propagation regions may exist for both the prin-
cipal E-type mode and the higher hybrid modes. The
condition for the existence of these regions was found to
be that the diameter of the metal core must be large
when compared to the thickness of the plasma sheath,
but small when compared to the plasma wavelength \,.

The backward-wave range may be considerably en-
hanced by surrounding the plasma sheath with a di-
electric medium rather than free space.

The behavior at small phase velocities is determined
mainly by the geometry of the guide. Due to this reason,
both the plasma and the dielectric Goubau lines are
similar in that the first two modes propagate down to
w=0, whereas all the higher modes possess a finite limit-
ing frequency. On the other hand, the dispersive nature
of the plasma manifests itself at the higher phase veloci-
ties and introduces a high-frequency cutoff phenomenon
which is absent in the conventional Goubau line. The
propagation range for the higher modes is therefore re-
stricted to a frequency band which may become very
narrow for a suitable choice of the parameters involved,



196

In view of the above characteristics, the plasma
Goubau line offers possibilities as a band filter applica-
tion or as a means for developing a simple slow back-
ward-wave structure. In addition, the various surface
wave modes analyzed herein are of importance in prob-
lems involving radiation from missiles which are sur-
rounded by an ionized layer when they reenter the
atmosphere,

Although the analysis here is rigorous, it is also recog-
nized that the plasma is taken as a highly idealized
medium which may not be appropriate for the applica-
tions cited above. Thus, losses due to collisions or other
causes were disregarded and the plasma was taken as a
completely uniform medium which is sharply defined in
space. It is nevertheless expected that the main features
described here (such as the existence itself of surface
waves and their backward-wave character) will be re-
tained even in actual, less perfect, plasma configura-
tions.

VII. ArPENDIX—CALCULATION OF THE
LiMiT FREQUENCY w9

The values for the limit frequency w, are obtained by
letting ¢ approach zero in (10) or (12). One then dis-
tinguishes between the following situations.

a) n=0

In this case, (12) is used and, since p—A as ¢—0, it
is seen by inspection that e,— — c«. This means that
w/w,—0 so that propagation extends to dc in the prin-
cipal mode.

b) n=1

For the first hybrid mode, (10) is employed together
with the following approximation for the Bessel func-
tions of small arguments.

Ki'(g) 1 < . wq)
== — |1 —g¢’log—-),
gK1(q) ¢ 2

where C=1logy=0.5772 - - - is Euler’s constant. Multi-
plying the numerator and denominator of (10) with g*
introducing the above approximation and retaining first
terms only, one obtains for very small values of ¢

1 A
2A logv—q— - !:— + 744 zi!

€y 2 A 72(1\)
JESNEEN .
& 1 73(A)

A 71(A)

Due to the term containing the logarithm, e,—— o
as ¢—0. Hence, the first hydrid mode also extends down
to w=0.

c) n>2

In the case of all higher modes, the pertinent approxi-
mation is

K9 i[ ¢

gK.(g) ¢ nJan—:T)J (v 2 2,
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Fig. 7—Plot of the limit frequency wo for the second hybrid mode
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Fig. 8—Plot of the limit frequency wo for the third hybrid mode
(n=3) in terms of the plasma guide parameters.

which, when introduced into (10), yields

n va(A)
€ nw—1 A v2(A)
A
€r 4 ’73(1\)

A 71(4)

Hence, propagation extends down to a finite limit fre-
quency, as determined from the last equation. Since the
v(A) functions vary slowly with R, except near R=1,
these limit frequencies are verv close to those obtained
for the plasma column (with no metal rod). This effect
is illustrated in Figs. 7 and 8 for n=2 and n =3, respec-
tively.

These curves also give a measure of the propagation
bandwidth obtainable in the higher modes since for
A <5, this band lies very closely between the values of wq
obtained here and w,=w,(14¢,)71/2,
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